Views provided by UsageCounts
arXiv: 1003.0398
handle: 2117/11603 , 2117/6954
In this note, we study the connection between the fractional Laplacian operator that appeared in the recent work of Caffarelli-Silvestre and a class of conformally covariant operators in conformal geometry.
Mathematics - Differential Geometry, Mathematics(all), Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria, Geometria diferencial, Conformally covariant operators, Dirichlet-to-Neumann operators, conformal geometry, Fractional Laplacian, conformally covariant operators, Manifolds (Mathematics), Mathematics - Analysis of PDEs, Fractional derivatives and integrals, FOS: Mathematics, Global differential geometry, Conformal geometry, Àrees temàtiques de la UPC::Matemàtiques i estadística, PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables), Laplacian operator, Pseudodifferential operators as generalizations of partial differential operators, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Partial differential equations on manifolds; differential operators, Differential Geometry (math.DG), 53A30, 35S05, fractional Laplacian, Asymptotically hyperbolic manifolds, :Matemàtiques i estadística::Geometria [Àrees temàtiques de la UPC], Analysis of PDEs (math.AP)
Mathematics - Differential Geometry, Mathematics(all), Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria, Geometria diferencial, Conformally covariant operators, Dirichlet-to-Neumann operators, conformal geometry, Fractional Laplacian, conformally covariant operators, Manifolds (Mathematics), Mathematics - Analysis of PDEs, Fractional derivatives and integrals, FOS: Mathematics, Global differential geometry, Conformal geometry, Àrees temàtiques de la UPC::Matemàtiques i estadística, PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables), Laplacian operator, Pseudodifferential operators as generalizations of partial differential operators, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Partial differential equations on manifolds; differential operators, Differential Geometry (math.DG), 53A30, 35S05, fractional Laplacian, Asymptotically hyperbolic manifolds, :Matemàtiques i estadística::Geometria [Àrees temàtiques de la UPC], Analysis of PDEs (math.AP)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 253 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 65 |

Views provided by UsageCounts