Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agricultural and For...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agricultural and Forest Meteorology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Moderate chilling requirement controls budburst for subtropical species in China

Authors: Yuanqi Pan; Yuanqi Pan; Keping Ma; Yanjun Du; Yanjun Du;

Moderate chilling requirement controls budburst for subtropical species in China

Abstract

Abstract It is well known that spring phenology has advanced in temperate regions over the last few decades in response to climate change. However, we understand much less about climate-driven changes in phenology within subtropical and tropical regions, where the timing of events is less predictable and has not been well-studied. It is not known whether subtropical plants have a similar winter chilling requirement to what has been well-documented in temperate species. To explore this possibility, we established a climate chamber experiment to test the effects of photoperiod and chilling on the timing of budburst within 37 subtropical woody species. We found that both moderate and strong chilling treatments advanced budburst and reduced forcing requirements, relative to plants subjected to a low chilling treatment. Longer photoperiod enhanced budburst rate for only two species, suggesting that chilling is more important for regulating budburst for most species. With respect to future climate change, the spring phenology of subtropical species is expected to be delayed further because species could lack the ability to meet their fundamental chilling requirement. These results have important implications for the conservation and management of tropical and subtropical plant populations under future climate change scenarios.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?