Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in Applied ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Applied Mathematics
Article . 2021 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2021
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Singularities of algebraic differential equations

Authors: Lange-Hegermann, Markus; Robertz, Daniel; Seiler, Werner; Seiss, Matthias;

Singularities of algebraic differential equations

Abstract

There exists a well established differential topological theory of singularities of ordinary differential equations. It has mainly studied scalar equations of low order. We propose an extension of the key concepts to arbitrary systems of ordinary or partial differential equations. Furthermore, we show how a combination of this geometric theory with (differential) algebraic tools allows us to make parts of the theory algorithmic. Our three main results are firstly a proof that even in the case of partial differential equations regular points are generic. Secondly, we present an algorithm for the effective detection of all singularities at a given order or, more precisely, for the determination of a regularity decomposition. Finally, we give a rigorous definition of a regular differential equation, a notoriously difficult notion ubiquitous in the geometric theory of differential equations, and show that our algorithm extracts from each prime component a regular differential equation. Our main tools are on the one hand the algebraic resp. differential Thomas decomposition and on the other hand the Vessiot theory of differential equations.

45 pages, 5 figures. The paper has been restructured and the presentation has been improved

Keywords

Singularities, monodromy and local behavior of solutions to ordinary differential equations in the complex domain, normal forms, Thomas decomposition, regularity decomposition, Local complex singularities, differential ideal, Vessiot distribution, [MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS], 12H05, 13P10, 34A09, 34C05, 34M35, 35A20, 57R45, 68W30, Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases), Differential algebra, Symbolic computation and algebraic computation, Mathematics - Commutative Algebra, Commutative Algebra (math.AC), Algebraic aspects (differential-algebraic, hypertranscendence, group-theoretical) of ordinary differential equations in the complex domain, Singularity in context of PDEs, geometric singularity, algebraic singularity, Mathematics - Algebraic Geometry, FOS: Mathematics, algebraic differential equation, Algebraic Geometry (math.AG), Implicit ordinary differential equations, differential-algebraic equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Green
bronze
Related to Research communities