Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in Applied ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Applied Mathematics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Applied Mathematics
Article . 2008
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Applied Mathematics
Article . 2008 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2008
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2006
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 7 versions
addClaim

Hankel determinants for some common lattice paths

Authors: Robert A. Sulanke; Guoce Xin;

Hankel determinants for some common lattice paths

Abstract

For a single value of $\ell$, let $f(n,\ell)$ denote the number of lattice paths that use the steps $(1,1)$, $(1,-1)$, and $(\ell,0)$, that run from $(0,0)$ to $(n,0)$, and that never run below the horizontal axis. Equivalently, $f(n,\ell)$ satisfies the quadratic functional equation $F(x) = \sum_{n\ge 0}f(n,\ell) x^n = 1+x^{\ell}F(x)+x^2F(x)^2.$ Let $H_n$ denote the $n$ by $n$ Hankel matrix, defined so that $[H_n]_{i,j} = f(i+j-2,\ell)$. Here we investigate the values of such determinants where $\ell = 0,1,2,3$. For $\ell = 0,1,2$ we are able to employ the Gessel-Viennot-Lindstr��m method. For the case $\ell=3$, the sequence of determinants forms a sequence of period 14, namely, $$ (\det(H_n))_{n \ge 1} = (1,1,0,0,-1,-1,-1,-1,-1,0,0,1,1,1,1,1,0,0,-1,-1,-1,...)$$ For this case we are able to use the continued fractions method recently introduced by Gessel and Xin. We also apply this technique to evaluate Hankel determinants for other generating functions satisfying a certain type of quadratic functional equation.

14 pages, 2 figures, FPSAC 06

Related Organizations
Keywords

Gessel–Viennot–Lindström, Continued fractions, Applied Mathematics, Exact enumeration problems, generating functions, 05A15; 15A36, 15A36, continued fraction, Lattice paths, lattice path, Hankel determinant, generating function, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), 05A15, Hankel determinants

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Average
Green
hybrid