<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Let X be a finite set of alternatives. A choice function c is a mapping which assigns to nonempty subsets S of X an element c(S) of S. A rational choice function is one for which there is a linear ordering on the alternatives such that c(S) is the maximal element of S according to that ordering. Arrow's impossibility theorem asserts that under certain natural conditions, if there are at least three alternatives then every non-dictatorial social choice gives rise to a non-rational choice function. Gil Kalai asked if Arrow's theorem can be extended to the case when the individual choices are not rational but rather belong to an arbitrary non-trivial symmetric class of choice functions. The main theorem of this paper gives an affirmative answer in a very general setting.
Social choice functions, Applied Mathematics, FOS: Mathematics, Social choice, Finite combinatorics, Mathematics - Logic, Logic (math.LO), Arrow theorem
Social choice functions, Applied Mathematics, FOS: Mathematics, Social choice, Finite combinatorics, Mathematics - Logic, Logic (math.LO), Arrow theorem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |