Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/bs.pmb...
Part of book or chapter of book . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An introduction to human microbiome

Authors: Bhabatosh, Das;

An introduction to human microbiome

Abstract

The microbiome is an assemblage of a complex community of microbes (bacteria, archaea, fungi, algae, protists, and viruses) and their biomolecules occupying a well-defined habitat in or on a living or non-living object. All the environmentally exposed surfaces of the human body are colonized with trillions of microbes from all three major domains of life, including bacteria, archea, and microscopic eukarya. However, the richness, abundance, and functional potency of microbial taxa living in different parts of the human body are distinct. The Presence of common microbial taxa in different body habitats is also very rare. With the recent development of next generation sequencing technologies, it has been established that the indigenous microbial community in the human body and their functional attributes within a given body habitat vary over time, between ethnic groups and health status of the host. Perturbation of homeostasis in community structures or functions due to any extrinsic factors can alter mutualistic host-microbe interactions and may lead to disease. In addition, the dysbiotic state of the microbiome can also affect the efficacy of therapeutics, prolong treatment duration and lead to undesired treatment outcomes. In this chapter, structure, functions, diversity and dynamics of human microbiome in health and diseases, factors that alter microbial composition, interactions between microbial taxa and xenobiotics, and therapeutic efficacy of drugs in dysbiotic conditions are highlighted.

Keywords

Bacteria, Host Microbial Interactions, Microbiota, Humans, Dysbiosis, Archaea

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!