Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/bs.ach...
Part of book or chapter of book . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gas Turbines and Engine Simulations

Authors: B. Cuenot;

Gas Turbines and Engine Simulations

Abstract

Abstract Turbulent combustion is a complex phenomenon combining the random nature of turbulence with the nonlinearity of chemistry. As a major process for energy production, in particular in propulsion systems, turbulent combustion must be perfectly controlled to ensure maximum efficiency with minimum environmental impact in terms of both fuel consumption and pollutant emissions. Today, the design and development of new concepts cannot be efficiently performed with experiment only and numerical simulation is required. An important step has been made in the last decades with the help of high-performance computing, which has allowed to go beyond the limited description of turbulence by the mean, as is done in the Reynolds-averaged approach. Thanks to large eddy simulation (LES), numerical simulation has recently emerged as a predictive tool, complementary to experiment and essential to understand the subtle interactions between fluid mechanics, thermochemistry, and heat transfer. In this chapter the main elements and current research trends of turbulent combustion modeling in the context of LES are described. First a brief introductory overview of technical challenges faced by engine manufacturers is given in the fields of automotive, aeronautical, and spatial propulsion. Combustion basics including thermochemistry and laminar flames are then presented to introduce the various concepts of turbulent combustion modeling. To illustrate the capacities of LES, recent examples of simulations are presented for various propulsion systems, in steady or transient operation phases where LES is undoubtedly the best adapted approach. Finally, recent first steps toward multiphysics computations, including two-phase flows and heat transfer, are reported.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!