Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/b978-0...
Part of book or chapter of book . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Obesity and thermoregulation

Authors: John R. Speakman;

Obesity and thermoregulation

Abstract

Excised fat tissue has a lower thermal conductivity than excised lean tissue. In theory then subcutaneous fat might serve as a barrier to heat loss and influence thermoregulatory abilities. In some aquatic mammals and animals from severely cold habitats subcutaneous adipose tissue has evolved into a continuous sheet that envelopes the organs and acts as a thermal insulation layer. This layer can comprise more than half of the cross-sectional area of the body. In most mammals however, the distribution of fat is less continuous. It has been suggested that in tropical animals this distribution may in fact allow animals to still store energy while not impeding heat loss. Studies of humans immersed in cool water convincingly demonstrate that obesity in humans also serves an insulation function. Humans with obesity cool less rapidly and have to elevate their metabolism less significantly than lean individuals when immersed in water. Although obesity provides an advantage in cold conditions it conversely impedes heat loss and makes obese people susceptible to heat stress more than lean individuals. In small mammals like mice the role of subcutaneous (or intradermal) fat for providing thermal insulation is less clear. In theory variations in thermoregulatory capacity may allow individuals different capabilities to burn off excess consumption. Hence, thermoregulatory variations may cause obesity differences. Thermoregulatory capacity is related to ambient temperature. Yet, levels of obesity are only weakly related to ambient temperature and this effect disappears when confounding factors like poverty and race are taken into account. Hence we conclude that obesity may have a significant impact on thermoregulatory physiology, but the converse is much less likely.

Related Organizations
Keywords

Animals, Humans, Obesity, Body Temperature Regulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?