Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy dependence of the effective atomic number of alloys

Authors: Gurbakhash Singh; Makhan Singh; Gurmel S. Mudahar;

Energy dependence of the effective atomic number of alloys

Abstract

Abstract To investigate the variation of effective atomic number ( Z eff) of alloys with photon energy, the Z eff of eight different alloys (tungsten steel, monel metal, solder, bell metal, bronze aluminium, bronze ordinary, platinum-rhodium-I and platinum-rhodium-II) have been studied for the total and partial photon interaction processes over a wide energy range from 10 keV to 100 GeV using a recent theoretical compilation by Berger and Hubbell (1987). For the total photon interaction, in all the alloys Z eff initially increases to the maximum value with increase in energy and then decreases to the minimum value with further increase in energy, after which Z eff again starts increasing with further increase in energy. The maximum and minimum value of Z eff is at different energies for different alloys depending upon the relative proportion and the range of atomic numbers of constituent elements of the alloy. For photo-electric absorption, Z eff increases in the low energy region and becomes independent of energy, whereas in Compton scattering, except below 200 keV, Z eff is constant up to 100 MeV. In the case of pair production, Z eff decreases with the increase in energy up to 10–12 MeV, after which it is noted to be independent of photon energy.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!