Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Combinato...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Combinatorial Theory Series A
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Combinatorial Theory Series A
Article . 1986
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Combinatorial Theory Series A
Article . 1986 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Embedding geometric lattices with topology

Authors: Hansjoachim Groh;

Embedding geometric lattices with topology

Abstract

[Das Referat bezieht sich auf diese und die vorhergehende Arbeit.] In dieser zweiten Arbeit wird der folgende Hauptsatz bewiesen: Sei \(G\) ein nicht-diskreter topologischer \(n\)-Raum mit \(n\geq 3\), dessen Geraden mindestens 3 Punkte enthalten. Dann gibt es eine starke Einbettung [vgl. \textit{W. M. Kantor}, J. Comb. Theory, Ser. A 17, 173--195 (1974; Zbl 0302.06018)] von \(G\) als offene Teilmenge in einen topologischen projektiven Raum der Dimension \(n\) (über einem topologischen Körper). Zum Beweis wird zunächst gezeigt, daß das Intervall \([p,1]\) für jeden Punkt \(p\) ein desarguesscher projektiver Raum der Dimension \(n-1\) ist ((3.3)). Das Einbettungsproblem für \(G\) wird auf ein lokales Problem reduziert ((4.3)), und dieses wird durch eine ''Zwei-Tafel-Projektion'' gelöst. Als Korollar erhält man (4.6): Ist \(G_ 0\) lokalkompakt und zusammenhängend, so ist \(G\) isomorph zu einer offenen Teilgeometrie eines projektiven Raumes der Dimension \(n\) über \(\mathbb R\), \(\mathbb C\) oder \(\mathbb H\), und der reelle Fall ist dadurch gekennzeichnet, daß die Geraden lokal homöomorph zu \(\mathbb R\) sind. Zum reellen Fall vgl. auch die geometrische Konvexitätstheorie bei \textit{J. Cantwell} [Bull. Inst. Math., Acad. Sin. 2, 289--307 (1974; Zbl 0293.52001)] und [ibid. 6, 303--311 (1978; Zbl 0402.52001)] sowie \textit{J. Cantwell} und \textit{D. C. Kay} [Trans. Am. Math. Soc. 246, 211--230 (1978; Zbl 0402.52002)].

Related Organizations
Keywords

Axiomatic and generalized convexity, topological geometric lattices, Topological linear incidence structures, Topological lattices, stable planes, Semimodular lattices, geometric lattices, Topological geometry, Theoretical Computer Science, embedding, geometric convexity, Computational Theory and Mathematics, topological projective space, Discrete Mathematics and Combinatorics, Topological lattices, etc. (topological aspects)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
hybrid
Related to Research communities