
AbstractLet V be a real finite dimensional vector space, and let C be a full cone in C. In Sec. 3 we show that the group of automorphisms of a compact convex subset of V is compact in the uniform topology, and relate the group of automorphisms of C to the group of automorphisms of a compact convex cross-section of C. This section concludes with an application which generalizes the result that a proper Lorentz transformation has an eigenvector in the light cone. In Sec. 4 we relate the automorphism group of C to that of its irreducible components. In Sec. 5 we show that every compact group of automorphisms of C leaves a compact convex cross-section invariant. This result is applied to show that if C is a full polyhedral cone, then the automorphism group of C is the semidirect product of the (finite) automorphism group of a polytopal cross-section and a vector group whose dimension is equal to the number of irreducible components of C. An example shows that no such result holds for more general cones.
Positive matrices and their generalizations; cones of matrices, Numerical Analysis, Algebra and Number Theory, Automorphism Group of Cone, Fixed Point, Extreme Point, Discrete Mathematics and Combinatorics, Geometry and Topology
Positive matrices and their generalizations; cones of matrices, Numerical Analysis, Algebra and Number Theory, Automorphism Group of Cone, Fixed Point, Extreme Point, Discrete Mathematics and Combinatorics, Geometry and Topology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
