Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Linear Algebra and i...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Linear Algebra and its Applications
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Linear Algebra and its Applications
Article . 1977
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Linear Algebra and its Applications
Article . 1977 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inverse eigenvalue problems

Authors: Shmuel Friedland;

Inverse eigenvalue problems

Abstract

In this paper the author describes two general methods to solve various inverse eigenvalue problems (i.e.p.). The first method is to state an i.e.p. as a system of polynomial equations. By rediscovering the non-linear alternative due to \textit{E. Noether} and \textit{B. L. van der Waerden} [Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse, 77--87 (1928; JFM 54.0140.05)] the author shows that the two classical i.e.p. are always solvable with a finite number of solutions over \(C\). [These results were obtained by the author earlier by different methods [Isr. J. Math. 11, 184--189 (1972; Zbl 0252.15004); Linear Algebra Appl. 12, 127--137 (1975; Zbl 0329.15003)]. Most of the paper is devoted to the study of the i.e.p. for symmetric matrices. In that case one looks for real valued solutions which may not exist in general. The crucial step is to reformulate the i.e.p. in such a way that it will have always a real valued solution which will coincide with the original solution, in case that the original solution is solvable over \(R\). More precisely, \(A^*\) is a solution of \(\min \sum_{i=1}^n(\lambda_i(A)-\omega_i)^2, A \in D\), where \(D\) is a closed set of \(n\times n\) symmetric matrices, \(\{\lambda_i(A)\}_1^n\) is the spectrum of \(A\), \(\{\omega_i\}_1^n\) is the prescribed spectrum and all the sequences are decreasing. By using the maximal characterization of \(\sum_{i=1}^k\lambda_i(A)\) due to \(K\). Fan we obtain a general algorithm to compute \(A^*\) in case that \(D\) is convex. This generalizes the results of O. H. Hald [Compt. Sci. Uppsala Univ. Rep. 42 (1972)]. Certain necessary conditions on \(\{\omega_i\}\) are given if the original i.e.p. is solvable over \(R\).

Related Organizations
Keywords

Numerical computation of eigenvalues and eigenvectors of matrices, Numerical Analysis, Eigenvalues, singular values, and eigenvectors, Algebra and Number Theory, Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral), Discrete Mathematics and Combinatorics, Geometry and Topology, Inequalities involving eigenvalues and eigenvectors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 1%
Top 10%
hybrid