Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Functiona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Functional Analysis
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Functional Analysis
Article . 1975
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Functional Analysis
Article . 1975 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Representations of differential operators on a Lie group

Authors: Palle E. T. Jorgensen;

Representations of differential operators on a Lie group

Abstract

AbstractIn this paper we apply the theory of second-order partial differential operators with nonnegative characteristic form to representations of Lie groups. We are concerned with a continuous representation U of a Lie group G in a Banach space B. Let E be the enveloping algebra of G, and let dU be the infinitesimal homomorphism of E into operators with the Gårding vectors as a common invariant domain. We study elements in E of the form P=∑1rX2j |X0 with the Xj,'s in the Lie algebra G.If the elements X0, X1,…, Xr generate G as a Lie algebra then we show that the space of C∞-vectors for U is precisely equal to the C∞-vectors for the closure dU(P), of dU(P). This result is applied to obtain estimates for differential operators.The operator dU(P) is the infinitesimal generator of a strongly continuous semigroup of operators in B. If X0 = 0 we show that this semigroup can be analytically continued to complex time ζ with Re ζ > 0. The generalized heat kernels of these semigroups are computed. A space of rapidly decreasing functions on G is introduced in order to treat the heat kernels.For unitary representations we show essential self-adjointness of all operators dU(Σ1r Xj2 + (−1)12X0 with X0 in the real linear span of the Xj's. An application to quantum field theory is given.Finally, the new characterization of the C∞-vectors is applied to a construction of a counterexample to a conjecture on exponentiation of operator Lie algebras.Our results on semigroups of exponential growth, and on the space of C∞ vectors for a group representation can be viewed as generalizations of various results due to Nelson-Stinespring [18], and Poulsen [19], who prove essential self-adjointness and a priori estimates, respectively, for the sum of the squares of elements in a basis for G (the Laplace operator). The work of Hörmander [11] and Bony [3] on degenerate-elliptic (hypoelliptic) operators supplies the technical basis for this generalization. The important feature is that elliptic regularity is too crude a tool for controlling commutators. With the aid of the above-mentioned hypoellipticity results we are able to “control” the (finite dimensional) Lie algebra generated by a given set of differential operators.

Related Organizations
Keywords

Linear symmetric and selfadjoint operators (unbounded), Numerical computation of solutions to systems of equations, \(L^p\)-spaces and other function spaces on groups, semigroups, etc., Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
hybrid