Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Pharmaco...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Inserm
Article . 1990
Data sources: HAL-Inserm
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Pharmacology
Article . 1990 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 1990
Data sources: Hal
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A M3 muscarinic receptor coupled to inositol phosphate formation in the rat cochlea?

Authors: Guiramand, Janique; Mayat, Ebrahim; Bartolami, Sylvain; Lenoir, Marc; Rumigny, Jean-Francois; Pujol, Rémy; Récasens, Max;

A M3 muscarinic receptor coupled to inositol phosphate formation in the rat cochlea?

Abstract

Various neuroactive substances, including excitatory and inhibitory amino acids, biogenic amines and neuropeptides, were tested for their ability to stimulate the inositol phosphate (IPs) cascade in the presence of lithium in the rat cochlea. Among them, only the muscarinic agonists (carbachol and oxotremorine M) were able to stimulate the IPs formation in 12-day-old rat cochleas. The carbachol-elicited IPs formation was inhibited by muscarinic antagonists with the following relative order of potency: atropine greater than 4-DAMP much greater than pirenzepine greater than methoctramine = AF-DX 116. This pharmacological profile suggests that the activation of the M3 muscarinic receptor subtype is responsible for the increase in IPs synthesis in the rat cochlea. However, an interaction with a m5 receptor subtype could not be completely excluded. The unusual link of only one receptor subtype with the phosphoinositide breakdown in the cochlea, as opposed to the usual existence of several receptors coupled to this transduction system in other organs such as the brain, suggest a unique role for muscarinic agonists in the cochlea.

Country
France
Keywords

Inositol Phosphates, Oxotremorine, Rats, Inbred Strains, Lithium, Tritium, Receptors, Muscarinic, Cochlea, Rats, [SDV] Life Sciences [q-bio], Animals, Carbachol, [SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC], Cells, Cultured, Inositol

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Average
Top 10%
Top 10%
Green
bronze