<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract An iterative learning control scheme is presented for a class of nonlinear dynamic systems which includes holonomic systems as its subset. The control scheme is composed of two types of control methodology: a linear feedback mechanism and a feedforward learning strategy. At each iteration, the linear feedback provides stability of the system and keeps its state errors within uniform bounds. The iterative learning rule, on the other hand, tracks the entire span of a reference input over a sequence of iterations. The proposed learning control scheme takes into account the dominant system dynamics in its update algorithm in the form of scaled feedback errors. In contrast to many other learning control techniques, the proposed learning algorithm neither uses derivative terms of feedback errors nor assumes external input perturbations as a prerequisite. The convergence proof of the proposed learning scheme is given under minor conditions on the system parameters.
CONVERGENCE, Nonlinear systems in control theory, INPUT UPDATE, PREDICTION LEARNING RULE, CURRENT LEARNING RULE, LEARNING CONTROL
CONVERGENCE, Nonlinear systems in control theory, INPUT UPDATE, PREDICTION LEARNING RULE, CURRENT LEARNING RULE, LEARNING CONTROL
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 172 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |