
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>AbstractClassical or Newtonian Mechanics is put in the setting of Riemannian Geometry as a simple mechanical system (M, K, V), where M is a manifold which represents a configuration space, K and V are the kinetic and potential energies respectively of the system. To study the geometry of a simple mechanical system, we study the curvatures of the mechanical manifold (Mh, gh) relative to a total energy value h, where Mh is an admissible configuration space and gh the Jacobi metric relative to the energy value h. We call these curvatures h-mechanical curvatures of the simple mechanical system.Results are obtained on the signs of h-mechanical curvature for a general simple mechanical system in a neighborhood of the boundary ∂Mh = {xεM: V(x) = h} and in a neighborhood of a critical point of the potential function V. Also we construct m = (n2) (n = dim M) functions defined globally on Mh, called curvature functions which characterize the sign of the h-mechanical curvature. Applications are made to the Kepler problem and the three-body problem.
Local Riemannian geometry, Dynamics of a system of particles, including celestial mechanics, Mathematics(all), Local differential geometry, Global Riemannian geometry, including pinching, Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
Local Riemannian geometry, Dynamics of a system of particles, including celestial mechanics, Mathematics(all), Local differential geometry, Global Riemannian geometry, including pinching, Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
