
We introduce a concept of complete proximal normal structure and used to investigate the existence of a best proximity point for an arbitrary family of cyclic relatively nonexpansive mappings in the setting of strictly convex Banach spaces. We also prove that every bounded, closed and convex pair in uniformly convex Banach spaces as well as every compact and convex pairs in Banach spaces has complete proximal normal structure. Furthermore, we consider a class of cyclic relatively nonexpansive mappings in the sense of Suzuki and establish a new best proximity point theorem in the setting of Hilbert spaces.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
