
Bleher et al. began studying higher codimension Iwasawa theory for classical Iwasawa modules. Subsequently, Lei and Palvannan studied an analogue for elliptic curves with supersingular reduction. In this paper, we obtain a vast generalization of the work of Lei and Palvannan. A key technique is an approach to the work of Bleher et al. that the author previously proposed. For this purpose, we also study the structure of $\pm$-norm subgroups and duality properties of multiply-signed Selmer groups.
26 pages
11R23, Mathematics - Number Theory, FOS: Mathematics, Number Theory (math.NT)
11R23, Mathematics - Number Theory, FOS: Mathematics, Number Theory (math.NT)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
