
AbstractIn recent decades, warming temperatures have caused sharp reductions in the volume of sea ice in the Arctic Ocean. Predicting changes in Arctic sea ice thickness is vital in a changing Arctic for making decisions about shipping and resource management in the region. We propose a statistical spatio-temporal two-stage model for sea ice thickness and use it to generate probabilistic forecasts up to three months into the future. Our approach combines a contour model to predict the ice-covered region with a Gaussian random field to model ice thickness conditional on the ice-covered region. Using the most complete estimates of sea ice thickness currently available, we apply our method to forecast Arctic sea ice thickness. Point predictions and prediction intervals from our model offer comparable accuracy and improved calibration compared with existing forecasts. We show that existing forecasts produced by ensembles of deterministic dynamic models can have large errors and poor calibration. We also show that our statistical model can generate good forecasts of aggregate quantities such as overall and regional sea ice volume. Supplementary materials accompanying this paper appear on-line.
spatio-temporal forecasting, integrated nested Laplace approximation, Applications of statistics to environmental and related topics, Gaussian process, stochastic partial differential equation, spatial statistics
spatio-temporal forecasting, integrated nested Laplace approximation, Applications of statistics to environmental and related topics, Gaussian process, stochastic partial differential equation, spatial statistics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
