
It is well-known that a paracompact space X is of covering dimension n if and only if any map f from X to a simplicial complex K can be pushed into its n-skeleton. We use the same idea to define dimension in the coarse category. It turns out the analog of maps f from X to K is related to asymptotically Lipschitz maps, the analog of paracompact spaces are spaces related to Yu's Property A, and the dimension coincides with Gromov's asymptotic dimension.
10 pages
54F45, 55M10, Mathematics - Geometric Topology, Mathematics - Metric Geometry, FOS: Mathematics, Metric Geometry (math.MG), Geometric Topology (math.GT)
54F45, 55M10, Mathematics - Geometric Topology, Mathematics - Metric Geometry, FOS: Mathematics, Metric Geometry (math.MG), Geometric Topology (math.GT)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
