<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ischemic stroke treatment has advanced in the last two decades and intravenous thrombolysis is now considered the standard of care for selected patients. Recanalization can also be achieved by mechanical endovascular treatment for patients with large vessel occlusions. Complicating treatment-related symptomatic intracerebral hemorrhage and prolonged needle-to-recanalization times have been identified as major determinants of poor three-month functional outcomes. A hybrid mechanical-thrombolytic system with a patch imbued with an ultra-low dose of thrombolytic agents loaded onto a stent-retriever has been developed.In this study, the in situ dose-response relationship of the thrombolytic patch imbued with up to 1000 IU of urokinase plasminogen activator (uPA) was quantified using Raman spectroscopy.Thrombi of up to 400 μm thickness dissolved within 15 min when patches imbued with < 1% of the conventional thrombolysis therapy dosage were applied. The results demonstrated that low-dose thrombolytic patches can dissolve normal clots compressed in the blood vessel in a short time. 500 IU is the threshold uPA dosage in the thrombolytic patch that most effectively dissolves the clots.This study suggests that a novel endovascular stent-retriever loaded with an ultra-low drug dose fibrinolytic patch may be a suitable treatment for patients who are ineligible for conventional thrombolytic therapy.
Dose–response relationship, Accelerated clot dissolution, Raman spectra, Threshold drug dosage, Low-dose thrombolytic patch
Dose–response relationship, Accelerated clot dissolution, Raman spectra, Threshold drug dosage, Low-dose thrombolytic patch
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |