Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical Reviews in ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clinical Reviews in Bone and Mineral Metabolism
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FEA to Measure Bone Strength: A Review

a review
Authors: Philippe K. Zysset; Bert van Rietbergen; Klaus Engelke;

FEA to Measure Bone Strength: A Review

Abstract

Finite element analysis (FEA) based on CT datasets of the spine or hip or on high-resolution peripheral CT datasets of the distal forearm or tibia is now widely used in research and clinical trials to estimate bone strength. Its clinical potential has recently been endorsed by the International Society of Clinical Densitometry Zysset et al. (J Clin Densitom 18(3):359–92, 2015). In vitro validation studies demonstrated the superiority of FEA over DXA for the prediction of ultimate load. In vivo studies confirmed the superiority in the spine, but data were less conclusive in the hip and forearm. Here, in addition to low bone strength the risk of falling is a major determinant of fracture risk. The next level of FEA dissemination, the integration into clinical practice, still faces a number of challenges such as access to dedicated FE software and its integration into the clinical workflow. Also compared to DXA, current FEA techniques have not shown a consistent superiority for hip fracture prediction, while hip CT is associated with a higher radiation exposure than hip DXA. For many clinicians, FEA and the direct measurement of strength instead of BMD are a novel perspective. However, the increasing use of abdominal and pelvic CT scans initially obtained for other clinical diagnosis, for the secondary use to assess osteoporosis and fracture risk (opportunistic screening), may accelerate the use of FEA. In this contribution, the basic technical aspects and limitation of FEA are discussed and the clinically relevant outcome measures are presented. Further advanced topics will broaden the understanding of the various aspects of FEA. Afterward a summary of in vivo studies using FEA for fracture prediction is given, which also includes a discussion of the clinical value of FEA for bone strength measurements.

Country
Netherlands
Keywords

Forearm, Hip, SDG 3 - Good Health and Well-being, Finite element analysis, Bone strength, SDG 3 – Goede gezondheid en welzijn, Spine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?