<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We consider the following question. Suppose that $d\ge2$ and $n$ are fixed, and that $��_1,��_2,\dots,��_n$ are $n$ specified angles. How many points do we need to place in $\mathbb{R}^d$ to realise all of these angles? A simple degrees of freedom argument shows that $m$ points in $\mathbb{R}^2$ cannot realise more than $2m-4$ general angles. We give a construction to show that this bound is sharp when $m\ge 5$. In $d$ dimensions the degrees of freedom argument gives an upper bound of $dm-\binom{d+1}{2}-1$ general angles. However, the above result does not generalise to this case; surprisingly, the bound of $2m-4$ from two dimensions cannot be improved at all. Indeed, our main result is that there are sets of $2m-3$ of angles that cannot be realised by $m$ points in any dimension.
QA Mathematics / matematika, Mathematics - Metric Geometry, FOS: Mathematics, Mathematics - Combinatorics, Metric Geometry (math.MG), Combinatorics (math.CO)
QA Mathematics / matematika, Mathematics - Metric Geometry, FOS: Mathematics, Mathematics - Combinatorics, Metric Geometry (math.MG), Combinatorics (math.CO)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |