Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Fixed Poi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Fixed Point Theory and Applications
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Positive definite solution of a nonlinear matrix equation

Authors: Snehasish Bose; Kallol Paul; Sk. Monowar Hossein;

Positive definite solution of a nonlinear matrix equation

Abstract

Using fixed point theory, we present a sufficient condition for the existence of a positive definite solution of the nonlinear matrix equation \({X = Q \pm \sum^{m}_{i=1}{A_{i}}^*F(X)A_{i}}\), where Q is a positive definite matrix, Ai’s are arbitrary n × n matrices and F is a monotone map from the set of positive definite matrices to itself. We show that the presented condition is weaker than that presented by Ran and Reurings [Proc. Amer. Math. Soc. 132 (2004), 1435–1443]. In order to do so, we establish some fixed point theorems for mappings satisfying (\({\psi, \phi}\))-weak contractivity conditions in partially ordered G-metric spaces, which generalize some existing results related to (\({\psi, \phi}\))-weak contractions in partially ordered metric spaces as well as in G-metric spaces for a given function f. We conclude, by presenting an example, that our fixed point theorem cannot be obtained from any existing fixed point theorem using the process of Jleli and Samet [Fixed Point Theory Appl. 2012 (2012), Article ID 210].

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!