
Indefinite symmetric matrices that are estimates of positive-definite population matrices occur in a variety of contexts such as correlation matrices computed from pairwise present missing data and multinormal based methods for discretized variables. This note describes a methodology for scaling selected off-diagonal rows and columns of such a matrix to achieve positive definiteness. As a contrast to recently developed ridge procedures, the proposed method does not need variables to contain measurement errors. When minimum trace factor analysis is used to implement the theory, only correlations that are associated with Heywood cases are shrunk.
Computational problems in statistics, eigenvalues, minimum trace factor analysis, Other Statistics and Probability, Basic linear algebra, Factor analysis and principal components; correspondence analysis
Computational problems in statistics, eigenvalues, minimum trace factor analysis, Other Statistics and Probability, Basic linear algebra, Factor analysis and principal components; correspondence analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
