
The goal of this two-part series of papers is to show that constructive logic with strong negation N is definitionally equivalent to a certain axiomatic extension NFLew of the substructural logic FLew. In this paper, it is shown that the equivalent variety semantics of N (namely, the variety of Nelson algebras) and the equivalent variety semantics of NFLew (namely, a certain variety of FLew-algebras) are term equivalent. This answers a longstanding question of Nelson [30]. Extensive use is made of the automated theorem-prover Prover9 in order to establish the result. The main result of this paper is exploited in Part II of this series [40] to show that the deductive systems N and NFLew are definitionally equivalent, and hence that constructive logic with strong negation is a substructural logic over FLew.
510 Mathematics
510 Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
