
Summary: We generalize the quasicrystallographic groups in the sense of Novikov and Veselov from Euclidean spaces to pseudo-Euclidean and affine spaces. We prove that the quasicrystallographic groups on Minkowski spaces whose rotation groups satisfy an additional assumption are projections of crystallographic groups on pseudo-Euclidean spaces. An example shows that the assumption cannot be dropped. We prove that each quasicrystallographic group is a projection of a crystallographic group on an affine space.
affine spaces, Other geometric groups, including crystallographic groups, projections, quasicrystallographic groups, modules, Discrete subgroups of Lie groups, enveloping algebras, Minkowski spaces, bilinear forms, Statistical mechanics of crystals
affine spaces, Other geometric groups, including crystallographic groups, projections, quasicrystallographic groups, modules, Discrete subgroups of Lie groups, enveloping algebras, Minkowski spaces, bilinear forms, Statistical mechanics of crystals
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
