
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 10722/155914 , 20.500.11937/33312
Signal processing methods for speech enhancement are of vital interest for communications equipments. In particular, multichannel algorithms, which perform spatial filtering to separate signals that have overlapping frequency content but different spatial origins, are important for a wide range of applications. Two of the most popular multichannel methods are blind signal separation (BSS) and beamforming. Briefly, (BSS) separates mixed sources by optimizing the statistical independence among the outputs whilst beamforming optimizes the look direction of the desired source(s). However, both methods have separation limitations, in that BSS succumbs to reverberant environments and beamforming is very sensitive to array model mismatch. In this paper, we propose a novel hybrid scheme, called beamspace BSS, which is intended to compensate the aforementioned separation weaknesses by jointly optimizing the spatial selectivity and statistical independence of the sources. We show that beamspace BSS outperforms the separation performance of the conventional sensor space BSS significantly, particularly in reverberant room environments.
570, Speech enhancement, Blind signal separation, 006, Microphone Arrays, Speech Enhancement, Microphone arrays, 620, Blind Signal Separation, Beamspace
570, Speech enhancement, Blind signal separation, 006, Microphone Arrays, Speech Enhancement, Microphone arrays, 620, Blind Signal Separation, Beamspace
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
