<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this paper, we propose a novel learning to rank method using Ensemble Ranking SVM. Ensemble Ranking SVM is based on Ranking SVM which has been commonly used for learning to rank. The basic idea of Ranking SVM is to formulate the problem of learning to rank as that of binary classification on instance pairs. In Ranking SVM, the training time of generating a train model grows exponentially as the training data set increases in size. To solve this problem and improve the ranking accuracy, we introduce ensemble learning into Ranking SVM. Therefore, Ensemble Ranking SVM remarkably improves the efficiency of the model training as well as achieves high ranking accuracy. Experimental results demonstrate that the performance of Ensemble Ranking SVM is quite impressive from the viewpoints of ranking accuracy and training time.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |