
A new condenser capacity $\CMp(E,G)$ is introduced as an alternative to the classical Dirichlet capacity in a metric measure space $X$. For $p>1$, it coincides with the $M_p$-modulus of the curve family $\Gamma(E,G)$ joining $\partial G$ to an arbitrary set $E \subset G$ and, for $p = 1$, it lies between $AM_1(\Gamma(E,G))$ and $M_1(\Gamma(E,G))$. Moreover, the $\CMp(E,G)$-capacity has good measure theoretic regularity properties with respect to the set $E$. The $\CMp(E,G)$-capacity uses Lipschitz functions and their upper gradients. The doubling property of the measure $\mu$ and Poincar\'e inequalities in $X$ are not needed.
\(M\)-moduli, Analysis on metric spaces, \(AM\)-moduli, capacity, Potentials and capacities on other spaces
\(M\)-moduli, Analysis on metric spaces, \(AM\)-moduli, capacity, Potentials and capacities on other spaces
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
