<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractWe study the geometric structures associated with curvature radii of curves with values on a Riemannian manifold (M, g). We show the existence of sub-Riemannian manifolds naturally associated with the curvature radii and we investigate their properties. In the particular case of surfaces these sub-Riemannian structures are of Engel type. The main character of our construction is a pair of global vector fields $$f_1,f_2$$ f 1 , f 2 , which encodes intrinsic information on the geometry of (M, g).
Mathematics - Differential Geometry, Differential Geometry (math.DG), 53C17 20F45 / 53C17, FOS: Mathematics
Mathematics - Differential Geometry, Differential Geometry (math.DG), 53C17 20F45 / 53C17, FOS: Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |