<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
It is shown that a collection of photons with nearly the same frequency exhibits a “condensation” type of phenomenon corresponding to a peak intensity. The observed cosmic background radiation can be explained from this standpoint. We have obtained analogous results by extremization of the occupation number for photons with the use of the Lambert W function. Some of the interesting applications of this function are briefly discussed in the context of graphene which exhibits an interesting two dimensional structure with several characteristic properties and diverse practical applications.
Photons, Astrophysics and Astronomy, Radiation, Condensation, Physics, Cosmic, 530
Photons, Astrophysics and Astronomy, Radiation, Condensation, Physics, Cosmic, 530
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |