<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Electromagnetic properties of quark-like particles are examined in a classical field model involving extended dual electromagnetic fields. These can have fractional charges and a confining potential that derives essentially completely from a short-range weaker potential. The combined potentials exhibit an asymptotically free spherical surface and contribute to the masses of the particles. The quarks are shown to have an intrinsic symmetry that describes their structures in hadrons. Multi- quark solutions are easily obtained for both stable and unstable particles. Each quark can undergo simple harmonic motion in a range of frequencies.
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Mathematical Physics (math-ph), Mathematical Physics
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Mathematical Physics (math-ph), Mathematical Physics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |