<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this paper we introduce two new notions of sectional curvature for Riemannian manifolds with density. Under both notions of curvature we classify the constant curvature manifolds. We also prove generalizations of the theorems of Cartan-Hadamard, Synge, and Bonnet-Myers as well as a generalization of the (non-smooth) 1/4-pinched sphere theorem. The main idea is to modify the radial curvature equation and second variation formula and then apply the techniques of classical Riemannian geometry to these new equations.
19 pages, The expositiion of the paper has been shortened by a few pages and some of the arguments streamlined at the suggestion of the referee. Final version, to appear in Geometriae Dedicata
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics, 53C25
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics, 53C25
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |