
X-rays have tremendous potential for imaging at the highest angular resulution. The high surface brightness of many x-ray sources will reveal angular scales heretofore thought unreachable. The short wavelengths make instrumentation compact and baselines short. We discuss how practical x-ray interferometers can be built for astronomy using existing technology. We describe the Maxim Pathfinder and Maxim missions which will achieve 100 and 0.1 micro-arcsecond imaging respectively. The science to be tackled with resolution of up to one million times that of HST will be outlined, with emphasis on eventually imaging the event horizon of a black hole.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
