<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 17205385
Legumes are of immense importance as food and feed, and for sustainable agriculture, due to their ability to fix nitrogen. Here, the chromosome maps of the legumes soybean (Glycine max), Lotus (Lotus japonicus), and red clover (Trifolium pratense) are reviewed. These species have relatively small chromosomes and therefore are difficult to exploit for chromosome studies. Nevertheless, the identification of individual chromosomes became feasible, and chromosome maps have been developed applying image analysis and fluorescence in-situ hybridization. For Lotus japonicus, e.g. detailed chromosome maps have been developed using the information of genetic linkage maps. Future prospects of further legume chromosome mapping for breeding and genetic purposes are discussed.
Chromosome Mapping, Fabaceae, Chromosomes, Plant
Chromosome Mapping, Fabaceae, Chromosomes, Plant
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |