Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of Global Ana...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Global Analysis and Geometry
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Connections and Higgs fields on a principal bundle

Authors: Tomás Gómez; Indranil Biswas;

Connections and Higgs fields on a principal bundle

Abstract

Let M be a compact connected Kahler manifold and G a connected linear algebraic group defined over \({\mathbb{C}}\) . A Higgs field on a holomorphic principal G-bundle eG over M is a holomorphic section θ of \(\text{ad}(\epsilon_{G})\otimes {\Omega}^{1}_{M}\) such that θ∧ θ = 0. Let L(G) be the Levi quotient of G and (eG(L(G)), θl) the Higgs L(G)-bundle associated with (eG, θ). The Higgs bundle (eG, θ) will be called semistable (respectively, stable) if (eG(L(G)), θl) is semistable (respectively, stable). A semistable Higgs G-bundle (eG, θ) will be called pseudostable if the adjoint vector bundle ad(eG(L(G))) admits a filtration by subbundles, compatible with θ, such that the associated graded object is a polystable Higgs vector bundle. We construct an equivalence of categories between the category of flat G-bundles over M and the category of pseudostable Higgs G-bundles over M with vanishing characteristic classes of degree one and degree two. This equivalence is actually constructed in the more general equivariant set-up where a finite group acts on the Kahler manifold. As an application, we give various equivalent conditions for a holomorphic G-bundle over a complex torus to admit a flat holomorphic connection.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!