Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Statistical Methods ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Statistical Methods & Applications
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recurrence relations and Benford’s law

Authors: Madeleine Farris; Noah Luntzlara; Steven J. Miller; Lily Shao; Mengxi Wang;

Recurrence relations and Benford’s law

Abstract

There are now many theoretical explanations for why Benford's law of digit bias surfaces in so many diverse fields and data sets. After briefly reviewing some of these, we discuss in depth recurrence relations. As these are discrete analogues of differential equations and model a variety of real world phenomena, they provide an important source of systems to test for Benfordness. Previous work showed that fixed depth recurrences with constant coefficients are Benford modulo some technical assumptions which are usually met; we briefly review that theory and then prove some new results extending to the case of linear recurrence relations with non-constant coefficients. We prove that, for certain families of functions $f$ and $g$, a sequence generated by a recurrence relation of the form $a_{n+1} = f(n)a_n + g(n)a_{n-1}$ is Benford for all initial values. The proof proceeds by parameterizing the coefficients to obtain a recurrence relation of lower degree, and then converting to a new parameter space. From there we show that for suitable choices of $f$ and $g$ where $f(n)$ is nondecreasing and $g(n)/f(n)^2 \to 0$ as $n \to \infty$, the main term dominates and the behavior is equivalent to equidistribution problems previously studied. We also describe the results of generalizing further to higher-degree recurrence relations and multiplicative recurrence relations with non-constant coefficients, as well as the important case when $f$ and $g$ are values of random variables.

Version 1.0, 24 pages, 1 image

Keywords

Probability (math.PR), 11K06, 60F05, 65Q30, FOS: Mathematics, Mathematics - Probability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
bronze