Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The European Physica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The European Physical Journal D
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exact analytic relation between quantum defects and scattering phases with applications to Green's functions in quantum defect theory

Authors: Chernov, V. E.; Manakov, N. L.; Starace, Anthony F.;

Exact analytic relation between quantum defects and scattering phases with applications to Green's functions in quantum defect theory

Abstract

The relation between the quantum defects, µ λ , and scattering phases, δ λ , in the single-channel Quantum Defect Theory (QDT) is discussed with an emphasis on their analyticity properties for both integer and noninteger values of the orbital angular momentum parameter λ. To derive an accurate relation between µ λ and δ λ for asymptotically-Coulomb potentials, the QDT is formally developed for the Whittaker equation in its general form “perturbed” by an additional short-range potential. The derived relations demonstrate that µ λ is a complex function for above-threshold energies, which is analogous to the fact that δ λ is complex for below-threshold energies. The QDT Green’s function, G λ , of the “perturbed” Whittaker equation is parameterized by the functions δ λ and µ λ for the continuous and discrete spectrum domains respectively, and a number of representations for G λ are presented for the general case of noninteger λ. Our derivations and analyses provide a more general justification of known results for nonrelativistic and relativistic cases involving Coulomb potentials and for a Coulomb plus point dipole potential.

Keywords

quantum defect theory, Physics, excitation, scattering phases, 500, Rydberg states, 530, highly excited states, Calculations and mathematical techniques, multiphoton ionization, Green’s functions, atomic and molecular physics, Whittaker equation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Average
bronze