
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The computational complexity of solving random 3-Satisfiability (3-SAT) problems is investigated. 3-SAT is a representative example of hard computational tasks; it consists in knowing whether a set of alpha N randomly drawn logical constraints involving N Boolean variables can be satisfied altogether or not. Widely used solving procedures, as the Davis-Putnam-Loveland-Logeman (DPLL) algorithm, perform a systematic search for a solution, through a sequence of trials and errors represented by a search tree. In the present study, we identify, using theory and numerical experiments, easy (size of the search tree scaling polynomially with N) and hard (exponential scaling) regimes as a function of the ratio alpha of constraints per variable. The typical complexity is explicitly calculated in the different regimes, in very good agreement with numerical simulations. Our theoretical approach is based on the analysis of the growth of the branches in the search tree under the operation of DPLL. On each branch, the initial 3-SAT problem is dynamically turned into a more generic 2+p-SAT problem, where p and 1-p are the fractions of constraints involving three and two variables respectively. The growth of each branch is monitored by the dynamical evolution of alpha and p and is represented by a trajectory in the static phase diagram of the random 2+p-SAT problem. Depending on whether or not the trajectories cross the boundary between phases, single branches or full trees are generated by DPLL, resulting in easy or hard resolutions.
37 RevTeX pages, 15 figures; submitted to Phys.Rev.E
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Condensed Matter - Disordered Systems and Neural Networks, Condensed Matter - Statistical Mechanics
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Condensed Matter - Disordered Systems and Neural Networks, Condensed Matter - Statistical Mechanics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 70 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
