
The stability of a Charge Density Wave (CDW) in a one-dimensional ring pierced by a Aharonov-Bohm flux is studied in a mean-field picture. It is found that the stability depends on the parity of the number $N$ of electrons. When the size of the ring becomes as small as the coherence length $��$, the CDW gap increases for even $N$ and decreases for odd $N$. Then when $N$ is even, the CDW gap decreases with flux but it increases when $N$ is odd. The variation of the BCS ratio with size and flux is also calculated. We derive the harmonics expansion of the persistent current in a presence of a finite gap.
Latex, 7 pages, 10 figures
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
