
Advances in instrumentation and technology now provide the ability to perform many quantitative determinations in the field. Additionally, the potential for sample degradation and analyte decomposition make it necessary to determine certain analytes (e.g., dissolved oxygen) in the field when conducting environmental analyses. Unfortunately, field environmental—analytical chemistry is not a substantial portion of the analytical chemistry curriculum at many institutions. Students in lower-level analytical chemistry courses are often non-chemistry science majors, particularly at institutions with small chemistry departments. We report here on an experiment in which field environmental-analytical chemistry is introduced in the quantitative analysis laboratory. In the context of a water quality assessment of a local river, students determine temperature, pH, ORP, nitrate nitrogen, and ammonia nitrogen at several points in the river. The experimental objective is to determine the potential effects local agricultural practices and treated wastewater discharge may be having on the water composition. The pedagogical objective is to expose these students to the difficulties involved in making analytical determinations in unfamiliar and/or disruptive settings.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
