Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Amino Acidsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Amino Acids
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Amino Acids
Article . 2016
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Use of the guanidination reaction for determining reactive lysine, bioavailable lysine and gut endogenous lysine

Authors: Shane M, Rutherfurd;

Use of the guanidination reaction for determining reactive lysine, bioavailable lysine and gut endogenous lysine

Abstract

Determining the bioavailability of lysine in foods and feedstuffs is important since lysine is often the first limiting indispensable amino acid in diets for intensively farmed livestock (pigs and poultry) and also in many cereal-based diets consumed by humans. When foods or feedstuffs are heat processed, lysine can undergo Maillard reactions to produce nutritionally unavailable products. The guanidination reaction, the reaction of O-methylisourea with the side chain amino group of lysine that produces homoarginine, has been used to determine the unmodified lysine (reactive lysine) in processed foods and feedstuffs and also true ileal digestible reactive lysine (bioavailable lysine). The advantages of the guanidination method in comparison with other reactive lysine methods such as the fluorodinitrobenzene, trinitrobenzenesulphonic acid and dye-binding methods are that it is very specific for reactive lysine and also that the method is relatively straightforward to conduct. The specificity of the guanidination reaction for the lysine side chain amino group is particularly important, since ileal digesta will contain N-terminal groups in the form of free amino acids and peptides. The main disadvantage is that complete conversion of lysine to homoarginine is required, yet it is not straightforward to test for complete guanidination in processed foods and feedstuffs. Another disadvantage is that the guanidination reaction conditions may vary for different food types and sometimes within the same food type. Consequently, food-specific guanidination reaction conditions may be required and more work is needed to optimise the reaction conditions across different foods and feedstuffs.

Related Organizations
Keywords

Swine, Lysine, Animal Feed, Poultry, Trinitrobenzenesulfonic Acid, Animals, Humans, Dinitrofluorobenzene, Food Analysis, Guanidine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!