<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The kernels in the tangible matter of our everyday experience are composed of light quarks. At least, they are light classically; but they don't remain light. Dynamical effects within the Standard Model of Particle Physics change them in remarkable ways, so that in some configurations they appear nearly massless, but in others possess masses on the scale of light nuclei. Modern experiment and theory are exposing the mechanisms responsible for these remarkable transformations. The rewards are great if we can combine the emerging sketches into an accurate picture of confinement, which is such a singular feature of the Standard Model; and looming larger amongst the emerging ideas is a perspective that leads to a Borromean picture of the proton and its excited states.
11 pages, 5 figures. Contribution to the proceedings of the ECT* Workshop: "Nucleon Resonances: From Photoproduction to High Photon Virtualities", 12-16 October 2015, based upon the ECT* Colloquium delivered during the meeting. arXiv admin note: substantial text overlap with arXiv:1509.08952, arXiv:1509.02925
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Lattice, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, High Energy Physics - Lattice (hep-lat), FOS: Physical sciences, Nuclear Experiment (nucl-ex), Nuclear Experiment
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Lattice, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, High Energy Physics - Lattice (hep-lat), FOS: Physical sciences, Nuclear Experiment (nucl-ex), Nuclear Experiment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |