Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Calculus of Variatio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Calculus of Variations and Partial Differential Equations
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2015
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

Critical O(d)-equivariant biharmonic maps

Critical \(O(d)\)-equivariant biharmonic maps
Authors: Cooper, Matthew K.;

Critical O(d)-equivariant biharmonic maps

Abstract

We study $O(d)$-equivariant biharmonic maps in the critical dimension. A major consequence of our study concerns the corresponding heat flow. More precisely, we prove that blowup occurs in the biharmonic map heat flow from $B^4(0, 1)$ into $S^4$. To our knowledge, this was the first example of blowup for the biharmonic map heat flow. Such results have been hard to prove, due to the inapplicability of the maximum principle in the biharmonic case. Furthermore, we classify the possible $O(4)$-equivariant biharmonic maps from $\mathbf{R}^4$ into $S^4$, and we show that there exists, in contrast to the harmonic map analogue, equivariant biharmonic maps from $B^4(0,1)$ into $S^4$ that wind around $S^4$ as many times as we wish. We believe that the ideas developed herein could be useful in the study of other higher-order parabolic equations.

24 pages, 1 figure. Published online in Calculus of Variations and Partial Differential Equations, 2015

Related Organizations
Keywords

35J40, 35J55, 35J60, 35J65, 58E20, 35K35, 35K55, 35B40, 34C11, 34C30, biharmonic map heat flow, blowup, Blow-up in context of PDEs, Nonlinear boundary value problems for nonlinear elliptic equations, Mathematics - Analysis of PDEs, Boundary value problems for higher-order elliptic equations, FOS: Mathematics, Nonlinear parabolic equations, Initial-boundary value problems for higher-order parabolic equations, Harmonic maps, etc., Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
bronze