Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Algorithmicaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Algorithmica
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linear-Time Algorithms for Partial \boldmath k -Tree Complements

Authors: A. Gupta; T. Shermer; D. Kaller;

Linear-Time Algorithms for Partial \boldmath k -Tree Complements

Abstract

It is known that a graph decision problem can be solved in linear time over partial k -trees if the problem can be defined in Monadic Second-order (or MS) logic. MS logic allows quantification of vertex and edge subsets, with respect to which logical sentences can encode many different conditions that an input graph must satisfy. It is not always clear, however, which graph problems can be expressed in such a way. In this paper we consider problems stated as logical conditions on subsets of the vertices and nonedges of the input graph. If such a problem can be defined in MS logic (i.e., in terms of the vertices and edges of the input graph), then there is a linear-time algorithm to solve the problem over partial k -trees. This algorithm also provides a solution to some problem over the graph-theoretic complements of partial k -trees. We study several examples of these ``complement-problems.'' We introduce a variation of MS logic in which, if a graph-problem can be defined over the class of partial k -tree complements, then there is a linear-time algorithm to solve that problem over partial k -tree complements, and (equivalently) a linear-time algorithm to solve its complement-problem over partial k -trees.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!