Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Graefe s Archive for...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Graefe s Archive for Clinical and Experimental Ophthalmology
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pathologic myopia and severe pathologic myopia: correlation with axial length

Authors: Ignacio Flores-Moreno; Mariluz Puertas; Elena Almazán-Alonso; Jorge Ruiz-Medrano; María García-Zamora; Rocío Vega-González; José M. Ruiz-Moreno;

Pathologic myopia and severe pathologic myopia: correlation with axial length

Abstract

Abstract Purpose This study had three aims: (1) correlate axial length (AL), age and best-corrected visual acuity in high myopic patients scored on the ATN grading system; (2) determine AL cut-off values to distinguish between pathologic myopia (PM) and severe PM; and (3) identify clinical differences between PM and severe PM. Methods This is a cross-sectional, non-interventional study. All patients underwent complete ophthalmologic examination, ATN grading and multimodal imaging (colour fundus photography, swept-source OCT, fundus autofluorescence, OCT angiography and fluorescein angiography). Results Six hundred forty-four eyes from 345 high myopic patients were included. The eyes were graded on the ATN system and classified as PM (≥ A2) or severe PM (≥ A3, ≥ T3 and/or N2). Significant between-group (PM vs. severe PM) differences (p < 0.05) were observed on the individual ATN components (atrophic [A], tractional [T] and neovascular [N]), age, BCVA and AL. AL was also linearly correlated with the A, T and N components (r = 0.53, p < 0.01; r = 0.24, p < 0.01; r = 0.20, p < 0.01; respectively). ROC curve analysis showed the optimal AL cut-off value to distinguish between PM at 28 mm (AUC ROC curve: 0.813, specificity: 75%, sensitivity: 75%) and severe PM at 29.50 mm (AUC ROC curve: 0.760, specificity: 75%, sensitivity: 70%). Conclusion AL is the main variable associated with myopic maculopathy. Due to the clinical differences found between PM and severe PM, there is need to create an objective cut-off point to distinguish these two different entities being the optimal cut-off points for AL 28 mm and 29.5 mm, respectively. These objective AL cut-off values should be taken into account for determining a correct follow-up, ophthalmic management and treatment.

Keywords

Cross-Sectional Studies, Retinal Diseases, Myopia, Degenerative, Visual Acuity, Retinal Disorders, Humans, Tomography, Optical Coherence, Retrospective Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
hybrid