Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Constructive Approxi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Constructive Approximation
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Bernstein Constants of Polynomial Approximation

Authors: D.S. Lubinsky;

On the Bernstein Constants of Polynomial Approximation

Abstract

Assume \(\alpha >0\) is not an integer. In papers published in 1913 and 1938, S.~N.~Bernstein established the limit $$\Lambda _{\infty ,\alpha }^{\ast }=\lim_{n\rightarrow \infty }n^{\alpha}E_{n}[ \vert x\vert ^{\alpha };L_{\infty }[ {-}1,1]] .$$ Here \(E_{n}[ \vert x\vert ^{\alpha };L_{\infty }[ -1,1] ] \) denotes the error in best uniform approximation of \(\left\vert x\right\vert ^{\alpha }$ on $\left[ {-}1,1\right] \) by polynomials of degree \(\leq n\). Bernstein proved that \(\Lambda _{\infty ,\alpha }^{\ast} \) is itself the error in best uniform approximation of \(\left\vert x\right\vert ^{\alpha }\) by entire functions of exponential type at most 1, on the whole real line. We prove that the best approximating entire function is unique, and satisfies an alternation property. We show that the scaled polynomials of best approximation converge to this unique entire function. We derive a representation for \(\Lambda _{\alpha ,\infty }^{\ast }\), as well as its \(L_{p}\) analogue for \(1\leq p<\infty \).

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 10%
Average
bronze