Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Comparati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Comparative Physiology B
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The physiology of the Tambaqui (Colossoma macropomum) at pH 8.0

Authors: Chris M. Wood; R. J. Gonzalez; Márcio Soares Ferreira; Susana Braz-Mota; Adalberto Luis Val;

The physiology of the Tambaqui (Colossoma macropomum) at pH 8.0

Abstract

The Tambaqui is a model neotropical teleost which is of great economic and cultural importance in artisanal fisheries and commercial aquaculture. It thrives in ion-poor, often acidic Amazonian waters and exhibits excellent regulation of physiology down to water pH 4.0. Curiously, however, it is reported to perform poorly in aquaculture at pH 8.0, an only slightly alkaline pH which would be benign for most freshwater fish. In initial experiments with Tambaqui of intermediate size (30-50 g), we found that ammonia excretion rate was unchanged at pH 4, 5, 6, and 7, but elevated after 20-24 h at pH 8, exactly opposite the pattern seen in most teleosts. Subsequent experiments with large Tambaqui (150-300 g) demonstrated that only ammonia, and not urea excretion was increased at pH 8.0, and that the elevation was proportional to a general increase in MO2. There was an accompanying elevation in net acidic equivalent excretion and/or basic equivalent uptake which occurred mainly at the gills. Net Na+ balance was little affected while Cl- balance became negative, implicating a disturbance of Cl- versus base exchange rather than Na+ versus acid exchange. Arterial blood pH increased by 0.2 units at pH 8.0, reflecting combined metabolic and respiratory alkaloses. Most parameters recovered to control levels by 18-24 h after return to pH 6.0. With respect to large Tambaqui, we conclude that a physiology adapted to acidic pH performs inappropriately at moderately alkaline pH. In small Tambaqui (4-15 g), the responses were very different, with an initial inhibition of ammonia excretion rate at pH 8.0 followed by a subsequent restoration of control levels. Elevated ammonia excretion rate occurred only after return to pH 6.0. Furthermore, MO2, plasma cortisol, and branchial vH+ATPase activities all declined during pH 8.0 exposure in small Tambaqui, in contrast to the responses in larger fish. Overall, small Tambaqui appear to cope better at pH 8.0, a difference that may correlate with their natural history in the wild.

Country
Brazil
Keywords

Blood Glucose, Gills, Hydrocortisone, Ph, Animal, Hydrogen-ion Concentration, Glucose Blood Level, Hydrogen-Ion Concentration, Blood, Metabolism, Oxygen Consumption, Ammonia, Gill, Animals, Urea, Characiformes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?