
The term "actinorhiza" refers both to the filamentous bacteria Frankia, an actinomycete, and to the root location of nitrogen-fixing nodules. Actinorhizal plants are classified into four subclasses, eight families, and 25 genera comprising more than 220 species. Although ontogenically related to lateral roots, actinorhizal nodules are characterized by differentially expressed genes, supporting the idea of the uniqueness of this new organ. Two pathways for root infection have been described for compatible Frankia interactions: root hair infection or intercellular penetration. Molecular phylogeny groupings of host plants correlate with morphologic and anatomic features of actinorhizal nodules. Four clades of actinorhizal plants have been defined, whereas Frankia bacteria are classified into three major phylogenetic groups. Although the phylogenies of the symbionts are not fully congruent, a close relationship exists between plant and bacterial groups. A model for actinorhizal specificity is proposed that includes different levels or degrees of specificity of host-symbiont interactions, from fully compatible to incompatible. Intermediate, compatible, but delayed or limited interactions are also discussed. Actinorhizal plants undergo feedback regulation of symbiosis involving at least two different and consecutive signals that lead to a mechanism controlling root nodulation. These signals mediate the opening or closing of the window of susceptibility for infection and inhibit infection and nodule development in the growing root, independently of infection mechanism. The requirement for at least two molecular recognition steps in the development of actinorhizal symbioses is discussed.
https://purl.org/becyt/ford/1.6, Frankia, Biological Nitrogen Fixation, Actinorhizal Symbiosis, https://purl.org/becyt/ford/1, Regulation of Nodulation
https://purl.org/becyt/ford/1.6, Frankia, Biological Nitrogen Fixation, Actinorhizal Symbiosis, https://purl.org/becyt/ford/1, Regulation of Nodulation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 166 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
